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Abstract 
 

ONTOGENETIC SHIFTS AND SYMBIONT SUCESSION IN A 
FRESHWATER CLEANING SYMBIOSIS MUTUALISM. (August 2014) 

 
Michael J. Thomas  

B.S., Appalachian State University 
M.S., Appalachian State University 

 
Chairperson: Robert P. Creed 

 
 

Host-symbiont associations and the outcome of symbioses may vary over host 

ontogeny; however, this has received little attention, especially in systems in which the host 

is a mobile animal. I examined how changes in crayfish size can influence their associations 

with ectosymbiotic branchiobdellidan worms and the consequences of these associations for 

both the host and the symbiont. In the Middle Fork of the New River, the dominant worm 

species shifts from Cambarincola philadelphicus to Cambarincola ingens as crayfish 

(Cambarus bartonii) increase in size. I evaluated whether this change in the dominant 

symbiont had effects on different size classes of crayfish, how the worms responded to 

different sized crayfish and what mechanisms promoted the shift. In a lab experiment, small 

and large crayfish were stocked with either C. philadelphicus or C. ingens. I monitored 

crayfish growth, worm numbers and worm reproduction. Neither worm species had an effect 

on small crayfish but both increased the growth of large crayfish. Cambarincola 

philadelphicus were more abundant and had higher cocoon production than C. ingens on 

small crayfish. Cambarincola philadelphicus persisted on large crayfish in the absence of C. 

ingens. In contrast, C. ingens populations were higher on large crayfish and this species 
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exhibited higher cocoon production on large hosts. Cambarincola ingens were rapidly 

removed by small crayfish. A subsequent lab experiment demonstrated that intraguild 

predation by C. ingens was responsible for the decline in C. philadelphicus on large crayfish. 

My results demonstrate that the outcome of the crayfish-branchiobdellidan association 

changes over crayfish ontogeny. Further, host regulation and intraguild predation by C. 

ingens determine ectosymbiont succession in this mutualism. The symbiont succession 

reported here is similar to that observed on various sessile hosts (e.g., ant succession on 

tropical trees species) suggesting that such succession may be a general phenomenon in 

many symbioses regardless of host mobility. 
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 The research detailed in this thesis will be submitted to Ecology, an international 

peer-reviewed journal owned and published by the Ecological Society of America. The thesis 

has been prepared according to the guidelines of the journal to which it will be submitted. 
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INTRODUCTION 
 
 

Species interactions can change during ontogeny, especially if a species exhibits 

drastic changes in body size or morphology during its life history (Werner and Gilliam 1984, 

Thompson 1988). Increases in body size can result in a species changing habitats, interacting 

with new species and outgrowing predators (Werner and Gilliam 1984). Moreover, increases 

in size may enable a species to prey on former competitors (i.e., intraguild predation) (Polis 

et al. 1989, Olson 1996). These ontogenetic niche shifts maximize growth rates by reducing 

resource overlap and minimizing size-selective predation at particular life stages, both of 

which affect the survivorship and recruitment of individuals to larger, reproductively active 

size classes (Werner and Gilliam 1984). Thus, ontogenetic niche shifts have important 

consequences for population dynamics as well as community structure (Werner and Gilliam 

1984, Polis et al. 1989). The effect of size on competitive and predator-prey interactions has 

been well-documented in freshwater fish, amphibians, and invertebrates (Mittelbach 1988, 

Osenberg et al. 1988, Werner and Hall 1988, Bergman and Greenberg 1994, Creed 1994, 

Olson 1996, Rudolf and Rasmussen 2013).  

 Interactions between hosts and symbionts should also exhibit changes in the nature of 

the interaction during ontogeny, particularly if the host is relatively long-lived in comparison 

to the symbiont and increases markedly in size over its lifespan. If the rewards and services 

provided by partner species in a symbiosis are a function of host size, the net effects of 

symbiotic interactions on components of partner fitness should change with changes in host 
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size (Thompson 1988, Bronstein 1994). Further, symbionts may associate with hosts during 

life stages that provide greater rewards and services to the symbiont. However, if there are 

multiple symbionts in a community that could utilize a host during a particular life stage then 

it is possible that dominant symbionts might actually replace subordinate symbiont taxa over 

time. Competition and predation by dominant symbionts could potentially lead to symbiont 

succession in which symbionts colonize and become extirpated during particular life stages 

of the host (Fonseca and Benson 2003). Alternatively, symbiont populations could disappear 

for other reasons (e.g., disease, active removal by host, changes in environmental conditions) 

leaving a host open to recolonization by other symbionts (Palmer et al. 2010).  

There is limited evidence from symbiotic associations for ontogenetic shifts in 

dominant symbionts. Similarly, there is little evidence showing that the outcome of an 

association may change with changes in host size or life stage. Recent evidence from the ant-

plant protective mutualisms demonstrates that these associations are not fixed but may 

change over the life of the host tree (Palmer et al. 2010). Moreover, the outcome of the 

interactions may change, with some ant species having a positive effect on the host while 

others have no discernable effect or even a negative effect (Palmer et al. 2010). Additionally, 

corals may exhibit specificity for different species of obligate algal symbionts during 

particular life stages (Abrego et al. 2009), and associations with housekeeping crabs may be 

most beneficial when coral colonies are small (Stewart et al. 2013). Overall, few studies have 

examined the influence of host size in mutualistic interactions (but see Abrego et al. 2009, 

Palmer et al. 2010, Yang and Rudolf 2010, Stewart et al. 2013) and there is no evidence of 

size-dependent outcomes in cleaning symbiosis mutualisms. In this study, I investigated size-

specific associations between two species of ectosymbiont branchiobdellidan annelids and 



3 
 

their crayfish host Cambarus bartonii. Crayfish exhibit ontogenetic shifts in habitat with 

changes in body size in order to avoid particular predators (Creed 1994, Englund and Krupa 

2000, Flinders and Magoulick 2007). Ontogenetic shifts in branchiobdellidan ectosymbionts 

of crayfish and their effect on partner fitness have not been demonstrated experimentally.  

Branchiobdellidans are small annelids commonly associated with many species of 

crayfish in the Northern Hemisphere (Gelder 1999). While associations between 

branchiobdellidans and their crayfish hosts are generally considered to be commensalisms 

(McManus 1960, Young 1966, Bishop 1968, Jennings and Gelder 1979, Keller 1992) or 

parasitisms (Grabda and Wierzbicka 1969, Quaglio et al. 2006, Rosewarne et al. 2012), three 

of these associations have recently been described as cleaning symbiosis mutualisms (Brown 

et al. 2002, 2012, Lee et al. 2009). Cleaning symbioses involve the removal of ectoparasites, 

debris and damaged tissues from client organisms by a cleaner organism (Limbaugh 1961, 

Losey 1972). While engaging in a cleaning symbiosis, cleaners should benefit by obtaining 

food resources while clients benefit by being relieved of potentially harmful parasites and 

fouling material (Losey 1972, Arnal et al. 2001). Demonstration of positive effects on client 

fitness in cleaning symbioses has been difficult (Poulin and Grutter 1996, Weeks 2000, 

Cheney and Côté 2003, Bshary et al. 2007); however, positive effects on components of 

client fitness (e.g., growth and survival) have been demonstrated multiple times in the 

crayfish-branchiobdellidan symbiosis (Brown et al. 2002, 2012, Lee et al. 2009). Unlike 

other cleaning symbioses, these are long term associations in which the branchiobdellidan 

worms benefit by using their crayfish host as a site for reproduction and maturation (Young 

1966, Brinkhurst and Gelder 2001, Creed et al., in press). Grazing by branchiobdellidans may 
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benefit crayfish by removing epibionts and fouling material from the gill filaments, thereby 

facilitating gas exchange and ammonia excretion across gill epithelia (Brown et al. 2002).  

The crayfish-branchiobdellidan association can shift from mutualism to parasitism as 

a function of abiotic and biotic factors (Lee et al. 2009, Brown et al. 2012). Previous studies 

have demonstrated that the positive effects of worms on crayfish growth and survival are 

mediated by worm density and environmental context (Brown et al. 2002, 2012, Lee et al. 

2009). Worms are maintained at beneficial densities through crayfish regulation (i.e., 

directed grooming) (Farrell et al. 2014), the extent of which is influenced by crayfish size 

(Skelton et al. 2014). Moreover, the degree of environmental fouling influences the amount 

of crayfish regulation as well as worm population size (Thomas et al. 2013). Small crayfish 

grow rapidly and molt frequently which may minimize any potential benefits worms might 

provide. Accordingly, the outcome of the association may not be a mutualism until crayfish 

growth rate slows and molts are less frequent. Further, with increasing size crayfish may 

become more tolerant of worms (Skelton et al. 2014). Nonetheless, the effect of 

branchiobdellidans on growth of different size classes of crayfish hosts has not been 

determined experimentally. Moreover, the effects of crayfish size on the fitness of different 

branchiobdellidan species have not been examined. Given the ease of manipulation, the 

crayfish-branchiobdellidan association is a model system for evaluating how partner size 

affects populations of both the host and symbiont. Further, these associations are interesting 

in that the interaction involves a mobile host with a relatively sedentary symbiont. 

In the Middle Fork of the New River in North Carolina, USA, preliminary surveys 

suggested that size-specific associations between the crayfish Cambarus bartonii and two 

species of branchiobdellidan, Cambarincola philadelphicus and Cambarincola ingens, may 
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occur. Cambarincola philadelphicus appeared to be the dominant worm species on small size 

classes of C. bartonii while C. ingens dominated larger crayfish. I conducted an extensive 

field survey to better quantify worm species abundance on different size classes of C. 

bartonii. These surveys were completed at three sites on the Middle Fork during early and 

late summer in order to discern any spatial or temporal effects. I then assessed the effects of 

C. philadelphicus and C. ingens, separately, on growth of small and large size classes of C. 

bartonii in a laboratory experiment. Finally, I conducted an additional experiment to 

determine the relative importance of crayfish regulation or interactions with C. ingens as the 

mechanism for replacement of C. philadelphicus on larger C. bartonii. I hypothesized that 

both worm species would have no effect on small crayfish growth (i.e., the associations with 

small crayfish are commensalisms) and, in accordance with preliminary survey data, small C. 

bartonii would be more tolerant of C. philadelphicus than C. ingens. I predicted that C. 

philadelphicus would remain a commensal as crayfish increased in size. Alternatively, I 

predicted that the late colonizing C. ingens would have positive effects on large crayfish 

growth and survival (i.e., the large C. bartonii-C. ingens association is a cleaning symbiosis 

mutualism) as C. ingens is engaged in a cleaning symbiosis with Cambarus chasmodactylus, 

a co-occurring crayfish species (Brown et al. 2002, 2012). Moreover, large C. bartonii would 

be more tolerant of C. ingens at this size class and provide a more suitable habitat for these 

worms. Finally, I predicted that C. ingens would replace C. philadelphicus on large C. 

bartonii through predation as this large species of worm has been observed consuming other 

branchiobdellidans. 
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METHODS 
 
 

Survey sites and study animals 

Crayfish and their associated worms were collected at three sites on the Middle Fork 

of the New River (Watauga County, North Carolina, USA). The Middle Fork is a third-order 

stream that flows northward from Blowing Rock, NC, to the South Fork of the New River in 

Boone, NC. The three sampling sites are as follows: Jordan Cook (MFJC, 81o39’27.907”W, 

36o11’27.056”N), Tweetsie (MFT, 81o38’49.374”W, 36o9’57.727”N) and Mustard Seed 

(MFMS, 81°64’66.91”W, 36°15’28.54”N). I used an additional site (Bench; MFB, 

81o38’44.083”W, 36o9’32.08”N) for the collection of experimental crayfish, hence MFB is 

not included in survey data analysis. The substrate at each survey site consisted of boulders 

and cobbles with areas of sand and gravel. Sections of the stream bank at all sites consisted 

of emergent vegetation. The MFJC, MFB and MFMS sites exhibited relatively higher canopy 

cover than MFT.  

Cambarus bartonii (Fabricius) are common crayfish throughout headwater streams of 

eastern North America (Hobbs 1972). These crayfish are dominant in first- and second-order 

tributaries and frequently co-occur with the New River crayfish, Cambarus chasmodactylus, 

in the Middle Fork of the New River (Fortino and Creed 2007). Cambarus bartonii are 

typically found underneath cobbles or in the vegetation along stream margins (RPC, pers. 

obs.). These crayfish function as ecosystem engineers (Creed and Reed 2004) and may host 

several species of branchiobdellidans (Hobbs et al. 1967, MJT, pers. obs.). 
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Branchiobdellidan worms commonly associate with crayfish throughout the Northern 

Hemisphere (Gelder 1999). Branchiobdellidans are considered obligate ectosymbionts in that 

they require a live crustacean host for cocoon deposition (Young 1966, Brinkhurst and 

Gelder 2001, Creed et al., in press). Various branchiobdellidan species have been described 

as commensals (McManus 1960, Young 1966, Bishop 1968, Jennings and Gelder 1979, 

Keller 1992), parasites (Grabda and Wierzbicka 1969, Quaglio et al. 2006, Rosewarne et al. 

2012) and mutualists (Brown et al. 2002, 2012, Lee et al. 2009, Creed et al., in press) of 

crayfish. In the Middle Fork watershed, C. bartonii may host up to six species of 

branchiobdellidan including Bdellodrilus illuminatus (Moore), Cambarincola fallax 

(Hoffman), Cambarincola ingens (Hoffman), Cambarincola philadelphicus (Leidy), 

Pterodrilus alcicornus (Moore) and Xironogiton instabilius (Moore) (MJT, pers. obs.). 

Cambarincola ingens is engaged in a cleaning symbiosis mutualism with the co-occurring 

crayfish C. chasmodactylus (Brown et al. 2002, 2012, Creed et al., in press). 

 
Crayfish and branchiobdellidan surveys 

 
 I conducted two separate field surveys in June and September 2013 to determine the 

relative abundance of branchiobdellidan species on different size classes of C. bartonii. 

Surveys were conducted along a longitudinal gradient to assess whether there were spatial 

patterns in worm presence and abundance. I collected the majority of C. bartonii from the 

vegetation along stream margins. Crayfish were captured by disturbing instream vegetation 

as well as lifting cobbles and boulders and allowing individuals to be swept into a net 

downstream. I collected crayfish from three size classes based on total carapace length 

(TCL): small (10-19 mm TCL), medium (20-29 mm TCL) and large (30-39 mm TCL). 
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Crayfish < 10 mm TCL did not appear to host worms and were not included in the survey. 

Crayfish were preserved individually in jars or vials of 70% ethanol. 

 Following capture, I identified and counted worms present on each crayfish in the 

laboratory. Crayfish carapaces were also removed to collect any worms that were present in 

the gill chamber. For each worm species at each survey site, worm data were analyzed across 

crayfish size classes with a one-way analysis of variance (ANOVA). A Kruskal-Wallis non-

parametric ANOVA on ranks was used due to numerous zero values for worm species 

present in certain size classes of crayfish. To examine significant differences among size 

classes, all pairwise comparisons for the small, medium and large size class were analyzed 

using Dunn’s method. Because worm abundance was similar at all three sites, data were 

pooled prior to analysis. 

 
Crayfish size by branchiobdellidan species experiment 

 
 This experiment was designed to determine the effects of C. ingens and C. 

philadelphicus, separately, on the growth of two sizes of C. bartonii. I conducted this 

experiment in laboratory aquaria from July through October 2013. I collected crayfish from 

the MFB site on July 1, 2013 and sorted individuals based on size. Mean (± 1 SE) TCL of 

experimental crayfish in the small and large size classes were 21.1 ± 0.1 mm and 31.7 ± 0.3 

mm, respectively. In the laboratory, I identified C. ingens and C. philadelphicus on crayfish, 

then mature and juvenile worms of each species were coaxed from the exoskeleton using a 

fine-tipped probe. Worms were designated as mature if they were markedly larger (≥3 mm 

and ≥6 mm in length for C. philadelphicus and C. ingens, respectively) and in close 

proximity to cocoons on the crayfish exoskeleton or if developing cocoons were visible 

within their bodies. Juvenile and mature worms of each species were placed separately into 
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dishes of river water for later restocking. The remaining worms and cocoons were killed by 

placing the crayfish in a 10% magnesium chloride (MgCl2) hexahydrate bath for 5 minutes 

(Brown et al. 2002). Following the MgCl2 bath, dead worms and cocoons were manually 

removed from the exoskeleton and crayfish were allowed to rest in a container of stream 

water for several minutes. 

 Each experimental crayfish within the small (S) or large (L) size class was randomly 

assigned to C. ingens (CI), C. philadelphicus (CP) or no worm (0W) treatments. Each 

treatment included both male and female crayfish. I stocked crayfish within each worm 

treatment by placing five worms on the dorsal carapace. Worm treatments consisted of three 

reproductively mature worms and two juvenile worms. Stocking density was determined 

using survey data at MFB where mean worm density of C. bartonii (inclusive of all size 

classes) was 5.3 ± 0.7 worms per crayfish. I then crossed crayfish size with worm treatment 

to produce the following six treatments (N = 6 replicates per treatment): small crayfish with 

C. ingens (S-CI); small crayfish with C. philadelphicus (S-CP); small crayfish with no 

worms (S-0W); large crayfish with C. ingens (L-CI); large crayfish with C. philadelphicus 

(L-CP); and large crayfish with no worms (L-0W).  

Crayfish were assigned to individual aquaria (38 L, 51 x 25 x 31 cm) and blocked by 

location and treatment using a randomized complete block design. Experimental aquaria 

contained aquarium aggregate (~1 L) mixed with stream sediments (~1 L of sand and organic 

matter) as well as five cobbles collected from the Middle Fork. Aquaria were filled with 

~28.5 L of stream water and were constantly aerated. Water temperature was maintained at 

~16˚C and laboratory lighting was adjusted throughout the experiment to mimic light and 

dark cycles of the season. Crayfish were fed two shrimp pellets three times weekly. Aquaria 
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water (~9.5 L) was drained and replaced every other week to reduce the accumulation of 

ammonia waste. 

I recorded crayfish blotted wet mass (BWM) at the start of the experiment and every 

two weeks thereafter for 12 weeks. To determine BWM, individual crayfish were blotted 

with paper towels for 1 minute and then weighed. I then calculated crayfish percent growth 

for each replicate after weighing. At the conclusion of the experiment, arcsine-transformed 

percent growth data were analyzed using repeated measures analysis of variance 

(rmANOVA) in R (version 3.0.1; R Project for Statistical Computing, Vienna, Austria). Due 

to unsynchronized molting, replication was reduced on certain dates for each treatment 

throughout the 12 week period, therefore, rmANOVA growth data were analyzed on days 

when all replicates were present in the small (days 0, 42 and 84) and large (days 0, 14, 42, 70 

and 84) crayfish treatments. For consistency, graphical representation of crayfish growth in 

the small size class treatments utilize the same sampling days as in the large size class 

treatments. All crayfish in the large size class molted once during the experiment except for 

one crayfish in the L-CP treatment that did not molt; this replicate was determined to be an 

outlier using a Dixon’s test and was removed from the analysis. All crayfish within the small 

size class molted twice during the experiment except for one crayfish in the S-0W treatment 

that only molted once; this replicate was retained in the analysis as it was not an outlier. 

Further, final growth data (day 84; arcsine-transformed) for the small and large size class 

treatments were analyzed by an ANOVA with orthogonal contrasts. This approach allowed 

me to determine significant differences between worm and no worm treatments (CP and CI 

vs. 0W) and between worm treatments (CP vs. CI) on the final date. 
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I also counted mature and juvenile worms and cocoon production on each crayfish 

weekly for 12 weeks. Worm and cocoon location were noted to determine distribution 

patterns. The number of worms and cocoons on crayfish were analyzed using rmANOVA for 

the entire 12 week period using R. In the analysis, a generalized linear mixed effects model 

was fit to all response variables except for large worms which were fit with a linear mixed 

effects model. The generalized model allowed me to specify the underlying distribution of 

the data in order to produce a better model fit. A negative binomial or Poisson distribution 

was used for the generalized models (all models except for large worms) based on residual 

plots that varied per response variable. The R function for generalized models is the glmer() 

and the glmer.nb(), the latter for negative binomial distributions, found in the lme4 package. 

The R function for linear mixed models is the lme() found in the nlme package. The same 

model was used for all variables (with the exception of underlying distribution): Response = 

Size x Species + Day + (Day|EU). This model allowed me to examine direct effects plus 

interactions for Size and Species, the direct effect of Day and crayfish (EU) as a random 

variable nested in Day. In addition to the rmANOVA, a two-way ANOVA was used to 

analyze all response variables on days 28, 56 and 84. 

On day 84, the experiment was terminated and experimental crayfish were preserved 

in 70% ethanol after weighing.  I removed crayfish carapaces to obtain final worm counts 

and to examine possible gill damage by worms. Gill scarring was quantified by counting the 

melanized spots and tips on gill filaments of each podobranch. Gill scarring data were 

analyzed using a one-way ANOVA.  

During the experiment, crayfish mortality was addressed by replacing dead 

individuals with a crayfish of similar TCL. All replacements were stocked with worms, 
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placed in clean aquaria and examined weekly for worms and cocoons as well as weighed 

biweekly during the 12 week period. Mortalities occurred in the S-0W (N = 2), the S-CP (N 

= 2) and the L-0W (N = 1) treatments.   

 
Branchiobdellidan interaction experiment 

This experiment sought to determine the mechanism underlying the ontogenetic 

succession in dominant worm species on large C. bartonii. The experiment was designed to 

determine the relative importance of crayfish regulation and predation by C. ingens as the 

mechanism for the replacement of C. philadelphicus on larger C. bartonii. The worm 

interaction experiment was conducted in laboratory aquaria from July through August 2013. I 

collected large C. bartonii (ranging from 32 to 36 mm TCL) from the MFB and MFT sites on 

July 17 and August 12, 2013 to conduct two separate trials of the experiment. Worms were 

identified as C. ingens or C. philadelphicus on crayfish, then mature and juvenile worms of 

each species were coaxed from crayfish and placed separately into dishes of river water for 

restocking.  Worms and cocoons were manually removed and additional cocoons and worms 

were killed using the MgCl2 bath as described above.  

Experimental crayfish were paired based on similar TCL and each crayfish within the 

pair was randomly assigned to the interaction (INT) or control (C-CP) treatment (N = 8 

pairs). Crayfish in the C-CP treatment were stocked with 10 C. philadelphicus (four mature 

and six juvenile worms) on the dorsal carapace. Using a substitutive design to maintain 

similar worm densities, crayfish within the INT treatment were stocked by introducing two 

mature and three juvenile C. philadelphicus then two mature and three juvenile C. ingens (N 

= 10 total worms) on the dorsal carapace. By introducing C. ingens after C. philadelphicus, I 

attempted to simulate the late colonization by C. ingens on experimental C. bartonii.  
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Crayfish were randomly assigned to individual aquaria and blocked by size. Aquaria 

contained ~19 L of stream water and three small cobbles. I did not include additional 

substrate so that aquaria could be examined for any worms that may have emigrated from 

experimental crayfish. I followed the same aeration, temperature and lighting protocols as 

described in the previous experiment. Crayfish were fed two shrimp pellets every other day. 

I examined crayfish for the presence and absence of worm species after nine days (a 

pilot experiment had previously demonstrated that nine days was sufficient for 

experimentation). Worm numbers and cocoons of each species were quantified and recorded 

for location on crayfish. Additionally, the cobbles and the aquaria were carefully examined to 

determine if worms had emigrated from the crayfish. I then determined the percent remaining 

worms for each species on experimental crayfish. Percent data were arcsine-transformed and 

analyzed using a two-way ANOVA to test for treatment and block (=pair) effects. Analyses 

compared percent remaining C. philadelphicus and C. ingens in the INT treatment, separately 

(due to lack of independence), to percent remaining worms in the control treatment.  

 

  



14 
 

 
 
 
 
 

RESULTS 
 
 

Crayfish and branchiobdellidan surveys 

 A total of 121 crayfish and 669 worms were collected from the Middle Fork in the 

early and late surveys. In both surveys at all three sites, C. philadelphicus and C. ingens were 

the dominant worm species found on the external surfaces of all C. bartonii size classes and 

accounted for 94.1% of external worms in early summer and 92.5% in late summer. In the 

early summer survey, the number of C. philadelphicus (H = 10.309, P = 0.006) and C. ingens 

(H = 31.692, P < 0.001) differed significantly across crayfish size classes (Fig. 2a). There 

were significantly more C. philadelphicus on medium crayfish than on small crayfish (Q = 

2.994, P < 0.05). There were significantly more C. ingens on the medium (Q = 3.869, P < 

0.05) and large (Q = 4.399, P < 0.05) crayfish than on small crayfish. In the late summer 

survey, C. philadelphicus (H = 22.611, P < 0.001) and C. ingens (H = 28.080, P < 0.001) 

numbers again differed significantly across crayfish size classes (Fig. 1b). There were 

significantly more C. philadelphicus on small (Q = 3.855, P < 0.05) and medium (Q = 4.524, 

P < 0.05) crayfish than on large crayfish. Alternatively, there were significantly less C. 

ingens on small (Q = 4.820, P < 0.05) and medium (Q = 4.060, P < 0.05) crayfish than on 

large crayfish. Both surveys exhibited a similar pattern of C. philadelphicus dominating the 

small and medium size classes of C. bartonii while C. ingens dominated the large size class. 
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Crayfish size by branchiobdellidan species experiment 

 There was no significant effect of worm species on small crayfish growth throughout 

the experiment (F2,15 = 0.032, P = 0.968) (Fig. 2a). Further, percent change in BWM of small 

crayfish did not differ significantly on day 84 (F2,15 = 0.081, P = 0.922). However, there was 

a significant overall effect of worms (F2,11 = 4.234, P = 0.043) and a significant time effect 

(F1,39 = 206.993, P < 0.001) on large crayfish growth (Fig. 2b). Crayfish in both the L-CP 

and L-CI treatment exhibited higher percent change in BWM than crayfish in the L-0W 

treatment. Crayfish growth in the L-CP and L-CI treatments diverged from L-0W by day 42 

and remained higher for the remainder to the experiment. Interestingly, there was little 

variability in growth in both the L-CP and L-CI treatments on days 70 and 84 while the L-

0W treatment exhibited greater variability on these dates. There was a significant overall 

worm effect on large crayfish growth for day 84 (F2,15 = 4.62, P = 0.027) with significantly 

greater crayfish growth in worm treatments (F1,15 = 9.24, P = 0.008). Crayfish growth did not 

differ significantly between the L-CP and L-CI treatments on day 84 (F1,15 = 0.002, P = 

0.965). 

 Crayfish size affected the number of mature worms present on crayfish throughout 

the experiment (t = -5.893, P < 0.001) (Fig. 3a). There was also a significant crayfish size x 

worm species effect (t = 3.315, P = 0.004) for mature worm numbers over time. Mature 

worms were rapidly removed by crayfish in the S-CI treatment from the onset of the 

experiment and no mature worms remained on these crayfish by day 28. On day 28, there 

were significantly more mature worms in the L-CI (q = 6.746, P < 0.001) and S-CP 

treatments (q = 3.572, P = 0.020) than the S-CI treatment. The number of mature worms did 

not differ significantly between the L-CI and L-CP treatments as well as the L-CP and S-CP 
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treatments despite the decline of mature worms in both the L-CP and S-CP treatments. This 

trend continued through day 56, yet at this point the surviving juvenile worms in the S-CI 

treatment had matured and did not differ significantly from the number of mature worms in 

the S-CP treatment. On day 84, there were significantly more mature worms in the L-CI 

treatment than the L-CP (q = 3.459, P = 0.024) and S-CI (q = 6.053, P < 0.001) treatments. 

Mature worm numbers were higher in the L-CP treatment than the S-CP treatment as well as 

the S-CP treatment than the S-CI treatment, though these values did not differ significantly.  

 Crayfish size (z = -6.890, P < 0.001) and a crayfish size x worm interaction (z = 

4.841, P < 0.001) also affected total cocoon production by mature worms throughout the 

experiment (Fig. 4a). Cocoon production was higher in the L-CI and L-CP treatments earlier 

in the experiment while it remained lower in the S-CP treatment and was absent in the S-CI 

treatment. The rapid removal of mature worms appeared to affect cocoon production in the 

S-CI treatment. Interestingly, the surviving S-CI mature worms did not deposit cocoons 

during days 0-21.  Starting on day 56, the L-CP treatment exhibited a decline in total cocoon 

production and was significantly lower than the L-CI treatment (q = 3.861, P = 0.013). On 

day 56, total cocoon numbers did not differ significantly between the L-CP and S-CP 

treatments and the S-CP and S-CI treatments. At this point in time the two surviving juvenile 

worms on one S-CI replicate had matured and began to deposit cocoons. Further, single 

mature worms present on two S-CI crayfish never deposited cocoons. On day 84, total 

cocoon numbers converged in the L-CP, S-CP and S-CI treatments. There were significantly 

more cocoons produced in the L-CI treatment than the L-CP (q = 4.889, P = 0.003) and S-CI 

treatment (q = 5.496, P = 0.001) and cocoon number did not differ significantly between S-

CI and S-CP.  
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 Similar to total cocoon production, there was a significant crayfish size (t = -5.139, P 

< 0.001) and crayfish size x worm species interaction (t = 3.035, P = 0.007) on per capita 

cocoon production by mature worms over time (Fig. 4b). Per capita cocoon production did 

not differ significantly between the L-CI, L-CP and S-CP treatments until day 56. On day 56, 

L-CP and S-CP exhibited a decline in per capita cocoon production. Per capita cocoon 

production was significantly higher in the L-CI treatment than the L-CP treatment by day 56 

(q = 3.136, P = 0.038) and remained significantly higher until the conclusion of the 

experiment (q = 4.054, P = 0.010). On days 56 and 84, per capita cocoon production did not 

differ significantly between the L-CP and S-CP treatments as well as the S-CP and S-CI 

treatments. There was no cocoon production in the S-CI treatment until day 49.  

 Throughout the experiment, juvenile worm numbers were affected by crayfish size (t 

= -2.703, P = 0.007) as well as time (t = 3.720, P < 0.001) as juveniles hatched from cocoons 

(Fig. 3b). Cocoon hatching largely occurred after day 28 and juvenile numbers steadily 

increased in the L-CI and L-CP treatments. By day 56, the number of juveniles did not differ 

significantly between the L-CI and L-CP treatments as well as the L-CP and S-CP 

treatments. Interestingly, juvenile numbers did not increase in the S-CP treatment until day 

56 despite the considerable amount of cocoon deposition by mature worms prior to this point 

in time. Juvenile numbers remained low in the S-CI treatment due to delayed cocoon 

deposition. By day 84, juvenile worm numbers had diverged in the L-CI and L-CP treatment 

with significantly more juveniles in the L-CI treatment (q = 5.183, P = 0.002). The number 

of juveniles did not differ significantly between the L-CP and S-CP treatment at the 

conclusion of the experiment. Although cocoons had been deposited towards the end of the 

experiment in the S-CI treatment, there were no juveniles born.  
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 Total worm numbers were affected by crayfish size (t = -4.446, P < 0.001) and there 

was a crayfish size x worm species interaction (t = 2.166, P = 0.030) over the course of the 

experiment (Fig. 3c). Total worm numbers were largely influenced by juvenile numbers, 

hence the similar patterns in these two variables. Due to stable mature worm numbers and 

increased juvenile numbers in the L-CI treatment, L-CI exhibited significantly higher total 

worm numbers than the L-CP treatment by day 84 (q = 5.745, P < 0.001).  The L-CP 

treatment experienced a decline in total worm numbers following day 70 and did not differ 

significantly from the S-CP treatment at the conclusion of the experiment. Total worm 

numbers remained low in the S-CI treatment and only included stocked juveniles that had 

matured during the experiment.  

 Crayfish gill scarring differed significantly among worm treatments on small crayfish 

(F2,15 = 14.407, P < 0.001). Mean (± 1 SE) number of gill scars was 1.83 ± 0.87, 14.67 ± 2.32 

and 5.80 ± 2.01 for the S-0W, S-CP and S-CI treatments, respectively. There was 

significantly higher scarring in the S-CP treatment than the S-0W (q = 7.315, P < 0.001) and 

S-CI treatments (q = 5.415, P = 0.005). There was a marginally significant different overall 

effect for gill scarring on large crayfish (F2,15 = 3.332, P = 0.063). Mean number of gill scars 

was 10.67 ± 2.62, 27.33 ± 5.22 and 23.20 ± 6.51 for the L-0W, L-CP and L-CI treatments, 

respectively. None of these treatments were significantly different from one another. 

 
Branchiobdellidan interaction experiment 

 
 The percent C. philadelphicus remaining in the INT treatment was significantly lower 

than that in the C-CP treatment (F1,7 = 75.026, P < 0.001) and there was no effect of pairing 

(Fig. 5). The percent C. philadelphicus remaining in the C-CP treatment did not differ 

significantly from the percent remaining C. ingens in the INT treatment (F1,7 = 1.934, P = 
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0.207), again with no effect of pairing (Fig. 5). No worms were recovered from aquaria or the 

cobbles. 
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DISCUSSION 
 
 

I have demonstrated that the ontogenetic succession of symbionts that has been well-

documented in associations involving sessile hosts (Fonseca and Benson 2003, Palmer et al. 

2010) also occurs in symbioses involving a mobile host. Interestingly, while this succession 

has fitness consequences for the symbionts, the larger host exhibits relatively greater fitness 

regardless of symbiont partner. In the Middle Fork of the New River, C. philadelphicus was 

the dominant worm on small crayfish and was replaced by C. ingens as crayfish increased in 

size, regardless of sample period. In the lab experiment, C. philadelphicus persisted on both 

small and large C. bartonii in the absence of C. ingens.  Cambarincola philadelphicus only 

had a positive effect on large crayfish, thus this symbiosis shifted from commensalism to 

mutualism as C. bartonii increased in size. Alternatively, C. ingens were quickly removed 

from small C. bartonii, suggesting a possible antagonistic relationship between this species 

and small crayfish. Cambarincola ingens also had a positive effect on large C. bartonii and 

exhibited a similar shift in their impact on host fitness throughout crayfish ontogeny. 

Additionally, I have demonstrated that intraguild predation by the later-arriving C. ingens 

will cause a shift in the dominant worm taxon on the host. Hence, the ontogenetic transition 

in the outcome of this symbiont-host interaction involves not only a change in 

branchiobdellidan impact as a function of host size and growth rate but also a shift in the 

identity of the symbiotic associate.   
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 In the crayfish size by branchiobdellidan species experiment, worm abundance 

patterns on small and large crayfish mirrored the patterns I observed in the field. On large 

crayfish, mature C. ingens remained stable throughout the experiment while mature C. 

philadelphicus exhibited a gradual decline. On small crayfish, the number of mature C. 

philadelphicus exhibited a comparable decline while mature C. ingens experienced a 

dramatic reduction by the first sampling date. Previous studies have demonstrated that 

crayfish can actively remove worms (Farrell et al. 2014) and the extent of removal is a 

function of crayfish size (i.e., small crayfish are less tolerant of worms) (Skelton et al. 2014). 

Moreover, worms are removed by crayfish if worms become food limited and commence to 

feeding on gill tissue (Brown et al. 2012, Thomas et al. 2013). The removal of C. ingens 

suggests that these worms may have been parasitic on small C. bartonii. When comparing 

worm species, C. ingens are larger and may require more resources (e.g., food and space), 

therefore gill parasitism by C. ingens likely occurred on smaller crayfish. In addition, the 

larger body size of C. ingens may have increased their detection by the crayfish and made 

them more vulnerable to removal by small crayfish. In the experiment, the number of mature 

C. ingens eventually increased as stocked, juvenile worms began to mature. It is important to 

note that the small crayfish were larger later in the experiment, therefore the availability of 

resources likely increased and enabled these worms to mature. 

 Both cocoon production by mature worms and juvenile worm abundance were 

influenced by crayfish size. Interestingly, cocoons were only deposited when two mature 

individuals were present on these crayfish, suggesting that single worms are incapable of 

reproduction due to mate limitation despite being hermaphroditic. Per capita cocoon 

production by mature worms exhibited a similar pattern to total cocoon production though 
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production rates by C. philadelphicus on small crayfish were comparable to both C. 

philadelphicus and C. ingens on large crayfish. Juvenile worm numbers were similar on large 

crayfish, however, these numbers diverged later in the experiment as C. ingens juveniles 

increased and C. philadelphicus decreased. On small crayfish, C. philadelphicus juveniles 

did not increase until later in the experiment. Despite delayed cocoon deposition by C. ingens 

on small crayfish and sufficient time for hatching, no juvenile worms were observed in this 

treatment. The delayed recruitment or absence of juvenile worms may reflect limited 

resources on small crayfish such that cocoons were not as well provisioned as those on large 

crayfish or that juvenile populations could not become established. Moreover, limited 

resources on small crayfish may have resulted in mature worms cannibalizing juveniles. 

Total worm numbers were also influenced by crayfish size and were largely driven by 

juveniles born during the experiment. Interestingly, the C. ingens present on small crayfish 

on the final date included only the surviving juveniles stocked at the beginning of the 

experiment. These juvenile worms may have avoided removal by crayfish as resources were 

proportionately more abundant given their smaller size, thus they did not resort to consuming 

gill tissue as was likely with mature worms. Only when their crayfish hosts increased in size 

did the juvenile C. ingens mature, and only when more than one mature worm was present 

did these worms begin to reproduce.  

The reoccurring pattern of greater C. ingens fitness on large crayfish and greater C. 

philadelphicus fitness on small crayfish reflects how each worm species differed in their 

ability to exploit their host at a particular host size. Additionally, the eventual decline in C. 

philadelphicus reproduction on large crayfish may be due to seasonal, natural senescence. 

Cambarincola philadelphicus appear to be the early successional species and their 
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populations may be more stable early in the season prior to crayfish molting and the onset of 

the summer growth period. As the season progresses, crayfish increase in size and become a 

more suitable habitat for C. ingens, the late successional species. The temporal separation of 

peak fitness per worm population may reflect how these species have evolved to reduce niche 

overlap throughout crayfish ontogeny.  

Neither worm species had a discernible effect on small crayfish growth. Similar 

results have been documented in an earlier study using smaller crayfish (Keller 1992). Small 

crayfish molted as many as two times during our experiment. I concluded that frequent 

molting by small crayfish may overwhelm any detectable effects of worms on crayfish 

growth. As crayfish increase in size, molting may occur only twice a year, thereby gill 

cleaning by worms would be more beneficial. Gill scarring by C. philadelphicus was highest 

on small crayfish, yet the number of gill scars fell below those observed under mutualistic 

associations between C. ingens and C. chasmodactylus (Brown et al. 2012).  Gill scarring by 

C. ingens was lower in the experiment due to rapid removal by the crayfish.  

Both worm species had positive effects on large C. bartonii growth. Hence, I have 

identified two additional cleaning symbioses mutualisms between crayfish and 

branchiobdellidans: the C. bartonii-C. philadelphicus and the C. bartonii-C. ingens 

association. It is important to note that these mutualisms only occur when C. bartonii are 

large. Moreover, variability in growth was greater in the control treatment than the C. 

philadelphicus and C. ingens treatments towards the end of the experiment. Less variability 

in the worm treatments suggests that branchiobdellidans may ameliorate any inherent 

individual variation in growth exhibited by large C. bartonii. Gill scarring for worm 
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treatments on large crayfish tended to be higher relative to controls but also remained below 

levels that have previously been determined to be mutualistic. 

 While the association between C. philadelphicus and large C. bartonii was a 

mutualism in my lab experiment, this worm species is uncommon on large crayfish in the 

Middle Fork. In both experiments, C. philadelphicus were able to persist on large crayfish in 

the absence of C. ingens. In the worm interaction experiment, when C. ingens were 

introduced, the relative abundance of C. philadelphicus declined. Further, I did not recover 

any C. philadelphicus from aquaria walls or cobbles, i.e., the decline of this species was due 

to consumption by C. ingens and not emigration. I speculate that intraguild predation by C. 

ingens is the mechanism for C. philadelphicus replacement on large C. bartonii. Altogether, 

partner regulation by small crayfish and intraguild predation by C. ingens on large crayfish 

drive the observed branchiobdellidan succession throughout C. bartonii ontogeny.  

Previous studies of other mutualisms have demonstrated that symbionts associate 

with hosts during particular life stages (Madden and Young 1992, Trager and Bruna 2006, 

Abrego et al. 2009, Palmer et al. 2010). In ant-plant protective mutualisms, changes in plant 

size affect the nature of the interaction such that resources provided by the plant host (e.g., 

habitat and food rewards) may be greater at certain life stages and offer different benefits to 

ant species within the community (Quintero et al. 2013). In my system, I found that worm 

fitness varied as a function of crayfish size and ontogenetic succession of these symbionts is 

driven by crayfish regulation and worm intraguild predation. Similarly, ontogenetic 

succession of ant species occurs throughout plant ontogeny and is a function of ant life 

history and behavior, resource availability, competition among ants and each species’ impact 

on host fitness (Feldhaar et al. 2003, Fonseca and Benson 2003, Djiéto-Lordon et al. 2004, 
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Palmer et al. 2010). Additionally, corals can exhibit specificity for certain algal 

endosymbionts during particular ontogenetic stages and this can lead to an ontogenetic 

succession in the algal community (Abrego et al. 2009). 

In the ant-plant protective mutualisms, ants may vary in the benefits they provide at 

particular stages of plant ontogeny (Trager and Bruna 2006, Palmer et al. 2010, Quintero et 

al. 2013). The extent of protection provided by ants also appears to be a function of ant 

species and herbivore behavior (Madden and Young 1992, Itino and Itioka 2001, Trager and 

Bruna 2006, Llandres et al. 2010). Similarly in coral associations, housekeeping crabs that 

prevent sediment accumulation have been demonstrated to offer varying benefits to different 

size classes of corals (e.g., smaller corals are more prone to sedimentation) (Stewart et al. 

2013). The effect of worms in the crayfish-branchiobdellidan association differs from these 

other mutualisms in that the interactions described here are only beneficial to both partners 

when crayfish are large.  

Symbioses are ubiquitous in ecological communities and can influence community 

structure and ecosystem function (Boucher et al. 1982). Concurrently, the nature of 

mutualisms are affected by communities and ecosystems, namely through changes in 

environmental context, partner density and the species involved (Bronstein 1994), as has 

been demonstrated in the crayfish-branchiobdellidan associations (Lee et al. 2009, Brown et 

al. 2012, Thomas et al. 2013, Farrell et al. 2014). My results show that the ontogenetic stage 

or size of host organisms directly influences the nature of mutualisms. Additionally, I have 

demonstrated that ontogenetic shifts in partner fitness may lead to symbiont succession, a 

relatively new area of research (Feldhaar et al. 2003, Fonseca and Benson 2003, Djiéto-

Lordon et al. 2004, Palmer et al. 2010). Interestingly, the crayfish-branchiobdellidan 
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association involves a mobile host with a relatively sedentary symbiont. As a result, the 

crayfish plays a much more active role not only in regulating worm populations, but also by 

functioning as a mobile habitat and vessel of worm dispersal. Given that crayfish are critical 

to the structure and functioning of freshwater communities (Creed 1994, Creed and Reed 

2004, Helms and Creed 2005), it is important to assess how size-specific associations may 

affect each partner’s fitness throughout their respective ontogenies, especially if these 

interactions are common and occur extensively throughout headwater streams.  
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FIGURE LEGENDS 
 

Figure 1. Mean (±1 SE) number of total C. ingens (CI) and C. philadelphicus (CP) on 

crayfish collected in the Middle Fork of the New River during early (A) and late (B) summer 

surveys. Crayfish size classes (based on TCL) were small (10-19 mm), medium (20-29 mm) 

and large (30-39 mm). Both male (M) and female (F) crayfish (code, replicates per treatment) 

were collected in the early (M, N = 13; F, N = 31) and late (M, N = 28; F, N = 49) summer 

surveys. 

 
Figure 2. Mean (±1 SE) percent change in blotted wet mass of small (A) and large (B) C. 

bartonii over 84 days. Treatments (code, replicates per treatment) were small crayfish with 

no worms (S-0W, N = 6); small crayfish with C. philadelphicus (S-CP, N = 6); small crayfish 

with C. ingens (S-CI, N = 6); large crayfish with no worms (L-0W, N = 5); large crayfish 

with C. philadelphicus (L-CP, N = 5); and large crayfish with C. ingens (L-CI, N = 4). 

 
Figure 3. Mean (±1 SE) number of mature (A), juvenile (B) and total (C) branchiobdellidans 

on crayfish (N = 6 replicates per treatment) over 84 days. See Figure 2 for treatment 

abbreviations.  

 
Figure 4. Mean (±1 SE) total number of cocoons (A) and per capita cocoon production (B) 

by mature branchiobdellidans on crayfish (N = 6 replicates per treatment) over 84 days. See 

Figure 2 for treatment abbreviations. 
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Figure 5. Mean (±1 SE) percentage of worms remaining in the control (C-CP; stocked with 

10 C. philadelphicus only) and interaction (INT; stocked with 5 C. philadelphicus and 5 C. 

ingens) treatments (N = 8 replicates per treatment).  The INT-CP and INT-CI represent 

percent C. philadelphicus and percent C. ingens remaining, respectively, in the INT 

treatment.   



36 
 

Figure 1 

N
um

be
r o

f w
or

m
s

0

2

4

6

8

10

CI 
CP 

 

   10-19 mm 20-29 mm 30-39 mm

N
um

be
r o

f w
or

m
s

0

2

4

6

8

 
 
  

b. Late summer survey 

a. Early summer survey 



37 
 

Figure 2 

Pe
rc

en
t c

ha
ng

e 
in

 B
W

M

0
20
40
60
80

100
120
140
160
180

0W 
CP 
CI 

 

   Time (days)
0 14 42 70 84

Pe
rc

en
t c

ha
ng

e 
in

 B
W

M

0

10

20

30

40

50

60

70

 
 
  

b. Large C. bartonii growth 

a. Small C. bartonii growth 



38 
 

Figure 3 
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Figure 4 
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Figure 5 
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